

BULLET PROFILE T-1³/₄ **SOLID STATE LAMPS**

STANDARD RED MV50152/4 YELLOW MV53152/4

PACKAGE DIMENSIONS

NOTES:

- ALL DIMENSIONS ARE IN INCHES (mm)
 TOLERANCES ARE .010 INCH UNLESS SPECIFIED
 AN EPOXY MENISCUS MAY EXTEND ABOUT .040" (1 mm)
- DOWN THE LEADS

HIGH EFFICIENCY GREEN MV54152/4 HIGH EFFICIENCY RED MV57152/4

DESCRIPTION

These solid state indicators offer a variety of lens effects and color availability in a short barrel T-13/4 package. The High Efficiency Red, High Efficiency Green and Yellow devices are made with gallium phosphide.

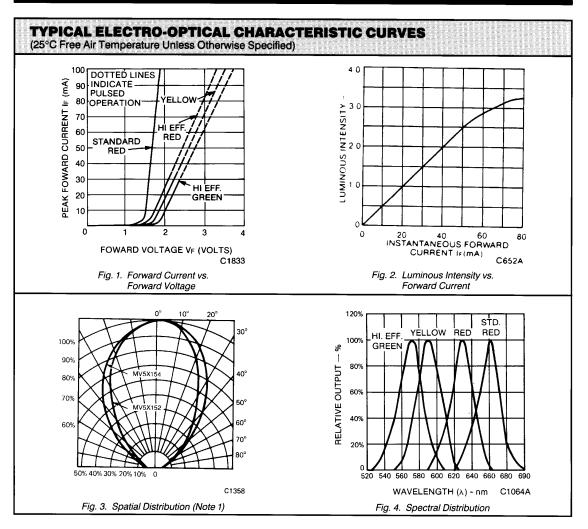
FEATURES

- High intensity light source with two lens effects
- Red, High Efficiency Red, High Efficiency Red, High Efficiency Green and Yellow colors available
- Versatile mounting on PC board or panel
- Long life—solid state reliability
- Low power requirements
- Compact, rugged, lightweight
- High efficiency
- MV5X154 diffused, MV5X152 non-diffused
- Short T-1¾ size

YPE	SOURCE COLOR	LENS COLOR	LENS EFFECT	
MV50152	Standard Red	Red Clear	Point Source	
MV50154	Standard red	Red Lightly Diffused	Soft Point Source	
MV53152	Yellow	Amber Clear	Point Source	
MV53154	Yellow	Amber Lightly Diffused	Soft Point Source	
MV54152	High Efficiency Green	Green Clear	Point Source	
MV54154	High Efficiency Green	Green Lightly Diffused	Soft Point Source	
MV57152	High Efficiency Red	Orange Clear	Point Source	
MV57154	High Efficiency Red	Orange Lightly Diffused	Soft Point Source	

BULLET PROFILE T-1³/₄ **SOLID STATE LAMPS**

PARAMETER		SYMBOL	TEST COND.	UNITS	50152	50154	53152	53154	54152	54154	57152	57154
Forward voltage	typ. max.	$V_{\rm F}$	I _F =10 mA I _F =10 mA	V	1.6 2.0	1.6 2.0	2.1 3.0	2.1 3.0	2.2 3.0	2.2 3.0	2.0 3.0	2.0 3.0
Luminous Intensity	min. typ.	l _v	I _F =10 mA I _F =10 mA	mcd mcd	0.6 2.0	0.4 1.5	3.0 10.	1.5 8.0	2.5 15.0	2.0 12.0	4.0 10.0	2.0 8.0
Peak wavelength		λр	l _F =10 mA	nm	660	660	585	585	565	565	630	630
Spectral line half width			l _F =10 mA	nm	20	20	35	35	35	35	45	45
Capacitance	typ.	С	V=0	pF	30	30	45	45	20	20	45	45
Reverse voltage	min.	VBR	I _R =100 μA	V	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Reverse current	max.	l _R	V ₈ =5.0 V	μA	100	100	100	100	100	100	100	100
Viewing angle (total) (See Fig. 2)		201/2		degrees	45	50	45	50	45	50	45	50


ABSOLUTE MAXIMUM RATINGS (T ₄ =25°C Unless Otherwise Specified)	
Power dissipation (MV5015X)	
Power dissipation (MV5315X=85 mW)	105 mW
Derate linearly from 25°C (MV5015X)	2.0 mW/°C
Derate linealy from 25°C	1.14 mW/°C
Storage and operating temperatures	
Lead soldering time at 260°C (See Note 2)	
Continuous forward current (MV5015X)	100 mA
Continuous forward current (MV5315X=20 mA)	
Peak forward current (1µsec pulse, 0.3% duty cycle) (MV5415X=90 mA) (MV5315X=60 mA)	
Reverse voltage	

NOTES

The axis of spatial distribution are typically within a 10° cone with reference to the central axis of the device.
 The leads of the device were immersed in molten solder at 260°C to a point 1/16 inch (1.6 mm) from the body of the device per MIL-Sd-750, with a dwell time of 5 seconds.

BULLET PROFILE T-1¾ SOLID STATE LAMPS

BULLET PROFILE T-1 3/4 SOLID STATE LAMPS

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.